Phosphodiesterase-5 inhibition promotes remyelination by MCP-1/CCR-2 and MMP-9 regulation in a cuprizone-induced demyelination model

Ana Karolina de Santana Nunes, Catarina Rapôso, Wilma Helena de Oliveira, Rodolfo Thomé, Liana Verinaud, Fernanda Tovar-Moll, Christina Alves Peixoto
Experimental Neurology 2016, 275 Pt 1: 143-53
While it has recently been shown that sildenafil (Viagra®) has a protective effect on myelination/remyelination, the mechanism of this protection is still unknown. In general, cytokines, chemokines and metalloproteinases have a pro-inflammatory action, but can also exert a role in modulating glial cell activation, contributing to the balance of cell response. Investigating these molecules can contribute to clarifying the mechanisms of sildenafil neuroprotection. In addition, it is not known whether sildenafil is able to restore an already installed neurodegenerative process or if the treatment period is critical for its action. The aim of the present study was to evaluate, in a cuprizone (CPZ)-induced demyelination model, the effects and mechanisms of time-dependent treatment with sildenafil (beginning 15 days after neurodegeneration and continuing for 15 days, or starting concomitantly with neurodegeneration and continuing for 30 days) on neuroinflammation and remyelination. Neuroinflammation and demyelination induced by CPZ in rodents has been widely used as a model of multiple sclerosis (MS). In the present study, five male C57BL/6 mice aged 7-10 weeks were used per group. For four weeks, the groups received either cuprizone (CPZ) 0.2% mixed in feed or CPZ combined with the administration of sildenafil (Viagra®, Pfizer, 25 mg/kg) orally in drinking water, starting concurrently with (sild-T0) or 15 days (sild-T15) after the start of CPZ treatment. Control animals received pure food and water. The cerebella were dissected and processed for immunohistochemistry, immunofluorescence (frozen), Western blotting, Luxol fast blue staining and transmission electron microscopy. Magnetic resonance was performed for live animals, after the same treatment, using CPZ 0.3%. CPZ induced an increase in the expression of IL-1β and a decrease in MCP-1, CCR-2, MBP and GST-pi, as well as promoting damage in the structure and ultra-structure of the myelin sheath. Interestingly, the administering of sild-T0 promoted a further increase of MMP-9, MCP-1, and CCR-2, possibly contributing to changes in the microglia phenotype, which becomes more phagocytic, cleaning myelin debris. It was also observed that, after sild-T0 treatment, the expression of GST-pi and MBP increased and the myelin structure was improved. However, sild-T15 was not efficient in all aspects, probably due to the short treatment period and to starting after the installation of the degenerative process. Therefore, the present study shows that sildenafil modulates inflammation, with the involvement of MMP-9, MCP-1, and CCR-2, and also contributes to myelin repair. These protective effects were dependent on the therapeutic strategy used. This clarification can strengthen research proposals into the mechanism of action of sildenafil and contribute to the control of neurodegenerative diseases such as MS.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"