Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

SIRT1 protects against myocardial ischemia-reperfusion injury via activating eNOS in diabetic rats.

BACKGROUND: Diabetic patients are more sensitive to myocardial ischemic injury than non-diabetic patients. Silent information regulator 1 (SIRT1) is a nicotinamide adenine dinucleotide-dependent histone deacetylase making the heart more resistant to ischemic injury. As SIRT1 expression is considered to be reduced in diabetic heart, we therefore hypothesized that up-regulation of SIRT1 in the diabetic heart may overcome its increased susceptibility to ischemic injury.

METHODS: Male Sprague-Dawley rats were fed with high-fat diet and injected with streptozotocin once to induce diabetes. Diabetic rats received injections of adenoviral vectors encoding SIRT1 (Ad-SIRT1) at five myocardial sites. Four days after adenoviral injection, the rats were subjected to myocardial ischemia and reperfusion (MI/R). Outcome measures included left ventricular function, infarct size, cellular death and oxidative stress.

RESULTS: Delivery of Ad-SIRT1 into the hearts of diabetic rats markedly increased SIRT1 expression. Up-regulation of SIRT1 in diabetic hearts improved cardiac function and reduced infarct size to the extent as in non-diabetic animals following MI/R, which was associated with reduced serum creatine kinase-MB, lactate dehydrogenase activities and cardiomyocyte apoptosis. Moreover, Ad-SIRT1 reduced the increase in the superoxide generation and malonaldialdehyde content and simultaneously increased the antioxidant capability. Furthermore, Ad-SIRT1 increased eNOS phosphorylation and reduced eNOS acetylation in diabetic hearts. NOS inhibitor L-NAME inhibited SIRT1-enhanced eNOS phosphorylation, and blunted SIRT1-mediated anti-apoptotic and anti-oxidative effects and cardioprotection.

CONCLUSIONS: Overexpression of SIRT1 reduces diabetes-exacerbated MI/R injury and oxidative stress via activating eNOS in diabetic rats. The findings suggest SIRT1 may be a promising novel therapeutic target for diabetic cardiac complications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app