Evaluation Studies
Journal Article
Add like
Add dislike
Add to saved papers

In vivo wideband multifrequency MR elastography of the human brain and liver.

PURPOSE: To demonstrate the feasibility of in vivo wideband MR elastography (wMRE) using continuous, time-harmonic shear vibrations in the frequency range of 10-50 Hz.

THEORY AND METHODS: The method was tested in a gel phantom with marked mechanical loss. The brains and livers of eight volunteers were scanned by wMRE using multislice, single-shot MRE with optimized fractional encoding and synchronization of sequence acquisition to vibration. Multifrequency three-dimensional inversion was used to reconstruct compound maps of magnitude |G*| and phase φ of the complex shear modulus. A new phase estimation, φ*, was developed to avoid systematic bias due to noise.

RESULTS: In the phantom, G*-dispersion measured by wMRE agreed well with oscillatory shear rheometry. |G*| and φ* measured at vibrations of 10-25 HZ, 25-35 HZ, and 40-50 HZ were 0.62 ± 0.08, 1.56 ± 0.16, 2.18 ± 0.20 kPa and 0.09 ± 0.17, 0.39 ± 0.16, 0.20 ± 0.13 rad in brain and 0.89 ± 0.11, 1.67 ± 0.20, 2.27 ± 0.35 kPa and 0.15 ± 0.10, 0.24 ± 0.05, 0.26 ± 0.05 rad in liver. Elastograms including all frequencies showed the best resolution of anatomical detail with |G*| = 1.38 ± 0.12 kPa, φ* = 0.24 ± 0.10 rad (brain) and |G*| = 1.79 ± 0.23 kPa, φ* = 0.24 ± 0.05 rad (liver).

CONCLUSION: wMRE reveals highly dispersive G* properties of the brain and liver, and our results suggest that the influence of large-scale structures such as fluid-filled vessels and sulci on the MRE-measured parameters increases at low vibration frequencies. Magn Reson Med 76:1116-1126, 2016. © 2015 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app