Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Veterinary Medicine and Omics (Veterinomics): Metabolic Transition of Milk Triacylglycerol Synthesis in Sows from Late Pregnancy to Lactation.

Mammalian milk is a key source of lipids, providing not only important calories but also essential fatty acids. Veterinary medicine and omics systems sciences intersection, termed as "veterinomics" here, has received little attention to date but stands to offer much promise for building bridges between human and animal health. We determined the changes in porcine mammary genes and proteomics expression associated with milk triacylglycerol (TAG) synthesis and secretion from late pregnancy to lactation. TAG content and fatty acid (FA) composition were determined in porcine colostrum (the 1st day of lactation) and milk (the 17th day of lactation). The mammary transcriptome for 70 genes and 13 proteins involved in TAG synthesis and secretion from six sows, each at d -17(late pregnancy), d 1(early lactation), and d 17 (peak lactation) relative to parturition were analyzed using quantitative real-time PCR and Western blot analyses. The TAG content and the concentrations of de novo synthesized FAs, saturated FAs, and monounsaturated FAs were higher in milk than in colostrum (p<0.05). Robust upregulation with high relative mRNA abundance was evident during lactation for genes associated with FA uptake (VLDLR, LPL, CD36), FA activation (ACSS2, ACSL3), and intracellar transport (FABP3), de novo FA synthesis (ACACA, FASN), FA elongation (ELOVL1), FA desaturation (SCD, FADS1), TAG synthesis (GPAM, AGPAT1, LPIN1, DGAT1), lipid droplet formation (BTN2A1, XDH, PLIN2), and transcription factors and nuclear receptors (SREBP1, SCAP, INSIG1/2). In conclusion, a wide variety of lipogenic genes and proteins regulate the channeling of FAs towards milk TAG synthesis and secretion in porcine mammary gland tissue. These findings inform future omics strategies to increase milk fat production and lipid profile and attest to the rise of both veterinomics and lipidomics in postgenomics life sciences.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app