JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Merlin/NF2 Suppresses Pancreatic Tumor Growth and Metastasis by Attenuating the FOXM1-Mediated Wnt/β-Catenin Signaling.

Cancer Research 2015 November 16
Merlin, the protein encoded by the NF2 gene, is a member of the band 4.1 family of cytoskeleton-associated proteins and functions as a tumor suppressor for many types of cancer. However, the roles and mechanism of Merlin expression in pancreatic cancer have remained unclear. In this study, we sought to determine the impact of Merlin expression on pancreatic cancer development and progression using human tissue specimens, cell lines, and animal models. Decreased expression of Merlin was pronounced in human pancreatic tumors and cancer cell lines. Functional analysis revealed that restored expression of Merlin inhibited pancreatic tumor growth and metastasis in vitro and in vivo. Furthermore, Merlin suppressed the expression of Wnt/β-catenin signaling downstream genes and the nuclear expression of β-catenin protein, and overexpression of Forkhead box M1 (FOXM1) attenuated the suppressive effect of Merlin on Wnt/β-catenin signaling. Mechanistically, Merlin decreased the stability of FOXM1 protein, which plays critical roles in nuclear translocation of β-catenin. Collectively, these findings demonstrated that Merlin critically regulated pancreatic cancer pathogenesis by suppressing FOXM1/β-catenin signaling, suggesting that targeting novel Merlin/FOXM1/β-catenin signaling is an effective therapeutic strategy for pancreatic cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app