ENGLISH ABSTRACT
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

[Reversal effect of 5-aza-2-deoxycytidine on the maternally expressed gene 3 promoter hypermethylation and its inhibitory effect on the proliferation of epithelial ovarian cancer cells].

OBJECTIVE: To investigate the reversal effects of different concentrations of DNA methylation inhibitor, 5-aza-2-deoxycytidine, on the hypermethylation of maternally expressed gene 3 (MEG3) gene promoter, and then the inhibitory effect of restoration of MEG3 expression on the proliferation of ovarian cancer cells.

METHODS: Human ovarian cancer OVCAR3 cells were treated with various concentration of 5-aza-2-deoxycytidine (0, 1, 5, 10, 20 µmol/L, respectively) for 6 days. Then the methylation status of MEG3 promoter was detected by methylation specific PCR (MSP). The alteration of MEG3 gene expression was detected by RT-PCR. Cell proliferation was determined by MTT assay and EdU incorporation assay.

RESULTS: After treated with 5-aza-2-deoxycytidine, the methylation status of MEG3 in the 0, 1, 5, 10, 20 µmol/L 5-aza-2-deoxycytidine groups were 1.00 ± 0.00, 0.79 ± 0.00, 0.67 ± 0.00, 0.65 ± 0.03 and 0.61 ± 0.01 folds, respectively (P < 0.05 for all). The relative expressions of MEG3 mRNA in the 0, 1, 5, 10, 20 µmol/L 5-aza-2-deoxycytidine groups were 1.00 ± 0.00, 2.04 ± 0.16, 2.44 ± 0.17, 3.19 ± 0.34 and 5.34 ± 0.39, respectively (P < 0.05 for all). In contrast to the negative control, the inhibition rates of the OVCAR3 cell growth were increased significantly when treated with 1, 5, 10, 20 µmol/L 5-aza-2-deoxycytidine in 2, 4 and 6 days. There were (40.78 ± 0.80)%, (35.65 ± 0.33)%, (31.81 ± 0.66)%, (27.33 ± 1.27)% and (17.75 ± 1.85)% of EdU-positive cells in the 0, 1, 5, 10 and 20 µmol/L 5-aza-2-deoxycytidine groups (P < 0.01 for all).

CONCLUSIONS: Maternally expressed gene 3 promoter hypermethylation is reversed by 5-aza-2-deoxycytidine in ovarian cancer cells. The downregulation of MEG3 gene might be resulted from the methylation, and the re-expression of MEG3 partly contribute to the growth inhibition of epithelial ovarian cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app