Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Photoluminescent carbon nanotubes interrogate the permeability of multicellular tumor spheroids.

Carbon 2016 Februrary 2
Nanomaterials have been extensively investigated for cancer drug delivery and imaging applications. Nanoparticles that show promise in two-dimensional cell culture systems often fail in more complex environments, possibly due to the lack of penetration in dense, three-dimensional structures. Multicellular tumor spheroids are an emerging model system to investigate interactions of nanoparticles with 3D in vitro cell culture environments. Using the intrinsic near-infrared emission of semiconducting carbon nanotubes to optically reconstruct their localization within a three-dimensional volume, we resolved the relative permeability of two different multicellular tumor spheroids. Nanotube photoluminescence revealed that nanotubes rapidly internalized into MCF-7 breast cancer cell-derived spheroids, whereas they exhibited little penetration into spheroids derived from SK-136, a cell line that we developed from murine liver cancer. Characterization of the spheroids by electron microscopy and immunohistochemistry revealed large differences in the extracellular matrix and interstitial spacing, which correlated directly with nanotube penetration. This platform portends a new approach to characterize the permeability of living multicellular environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app