Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

MicroRNA-7 activates Nrf2 pathway by targeting Keap1 expression.

Nuclear factor E2-related factor 2 (Nrf2) is a key transcription factor that regulates the expression of a number of antioxidant and detoxifying genes that provide cellular protection against various stressors including reactive oxygen species (ROS). Nrf2 activity is tightly regulated by a cytoplasmic inhibitory protein called Kelch-like ECH-associated protein 1 (Keap1). The mechanism that controls Keap1 expression, however, remains poorly understood. In the present study, we demonstrate that microRNA-7 (miR-7), which is highly expressed in the brain, represses Keap1 expression by targeting the 3'-untranslated region (UTR) of its mRNA in human neuroblastoma cells, SH-SY5Y. Subsequently, this event results in an increased Nrf2 activity, as evidenced by an increase in the expression of its transcriptional targets, heme oxygenase 1 (HO-1) and glutamate-cysteine ligase modifier subunit (GCLM), and an enhanced nuclear localization of Nrf2. In addition, miR-7 decreases the intracellular hydroperoxides level and increases the level of reduced form of glutathione, indicative of oxidative stress relief. We also demonstrate that targeted repression of Keap1 and activation of Nrf2 pathway, in part, underlies the protective effects of miR-7 against 1-methyl-4-phenylpyridinium (MPP+)-induced toxicity in SH-SY5Y and differentiated human neural progenitor cells, ReNcell VM. These findings point to a new mechanism by which miR-7 exerts cytoprotective effects by regulating the Nrf2 pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app