JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
RETRACTED PUBLICATION
Add like
Add dislike
Add to saved papers

Functional Analysis of the Exocyst Subunit Sec15 in Candida albicans.

Eukaryotic Cell 2015 December
In prior studies of exocyst-mediated late secretion in Candida albicans, we have determined that Sec6 contributes to cell wall integrity, secretion, and filamentation. A conditional mutant lacking SEC6 expression exhibits markedly reduced lateral hyphal branching. In addition, lack of the related t-SNAREs Sso2 and Sec9 also leads to defects in secretion and filamentation. To further understand the role of the exocyst in the fundamental processes of polarized secretion and filamentation in C. albicans, we studied the exocyst subunit Sec15. Since Saccharomyces cerevisiae SEC15 is essential for viability, we generated a C. albicans conditional mutant strain in which SEC15 was placed under the control of a tetracycline-regulated promoter. In the repressed state, cell death occurred after 5 h in the tetR-SEC15 strain. Prior to this time point, the tetR-SEC15 mutant was markedly defective in Sap and lipase secretion and demonstrated increased sensitivity to Zymolyase and chitinase. Notably, tetR-SEC15 mutant hyphae were characterized by a hyperbranching phenotype, in direct contrast to strain tetR-SEC6, which had minimal lateral branching. We further studied the localization of the Spitzenkörper, polarisomes, and exocysts in the tetR-SEC15 and tetR-SEC6 mutants during filamentation. Mlc1-GFP (marking the Spitzenkörper), Spa2-GFP (the polarisome), and Exo70-GFP (exocyst) localizations were normal in the tetR-SEC6 mutant, whereas these structures were mislocalized in the tetR-SEC15 mutant. Following alleviation of gene repression by removing doxycycline, first Spitzenkörper, then polarisome, and finally exocyst localizations were recovered sequentially. These results indicate that the exocyst subunits Sec15 and Sec6 have distinct roles in mediating polarized secretion and filamentation in C. albicans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app