Achieving Selective and Efficient Electrocatalytic Activity for CO2 Reduction Using Immobilized Silver Nanoparticles

Cheonghee Kim, Hyo Sang Jeon, Taedaehyeong Eom, Michael Shincheon Jee, Hyungjun Kim, Cynthia M Friend, Byoung Koun Min, Yun Jeong Hwang
Journal of the American Chemical Society 2015 November 4, 137 (43): 13844-50
Selective electrochemical reduction of CO2 is one of the most sought-after processes because of the potential to convert a harmful greenhouse gas to a useful chemical. We have discovered that immobilized Ag nanoparticles supported on carbon exhibit enhanced Faradaic efficiency and a lower overpotential for selective reduction of CO2 to CO. These electrocatalysts were synthesized directly on the carbon support by a facile one-pot method using a cysteamine anchoring agent resulting in controlled monodispersed particle sizes. These synthesized Ag/C electrodes showed improved activities, specifically decrease of the overpotential by 300 mV at 1 mA/cm(2), and 4-fold enhanced CO Faradaic efficiency at -0.75 V vs RHE with the optimal particle size of 5 nm compared to polycrystalline Ag foil. DFT calculations enlightened that the specific interaction between Ag nanoparticle and the anchoring agents modified the catalyst surface to have a selectively higher affinity to the intermediate COOH over CO, which effectively lowers the overpotential.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"