JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A Hardwired Circuit Supplemented with Endocannabinoids Encodes Behavioral Choice in Zebrafish.

Current Biology : CB 2015 October 20
Animals constantly make behavioral choices to facilitate moving efficiently through their environment. When faced with a threat, animals make decisions in the midst of other ongoing behaviors through a context-dependent integration of sensory stimuli. In vertebrates, the mechanisms underlying behavioral selection are poorly understood. Here, we show that ongoing swimming in zebrafish is suppressed by escape. The selection of escape over swimming is mediated by switching between two distinct motoneuron pools. A hardwired circuit mediates this switch by acting as a clutch-like mechanism to disengage the swimming motoneuron pool and engage the escape motoneuron pool. Threshold for escape initiation is lowered and swimming suppression is prolonged by endocannabinoid neuromodulation. Thus, our results reveal a novel cellular mechanism involving a hardwired circuit supplemented with endocannabinoids acting as a clutch-like mechanism to engage/disengage distinct motor pools to ensure behavioral selection and a smooth execution of motor action sequences in a vertebrate system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app