A Hardwired Circuit Supplemented with Endocannabinoids Encodes Behavioral Choice in Zebrafish

Jianren Song, Konstantinos Ampatzis, Jessica Ausborn, Abdeljabbar El Manira
Current Biology: CB 2015 October 19, 25 (20): 2610-20
Animals constantly make behavioral choices to facilitate moving efficiently through their environment. When faced with a threat, animals make decisions in the midst of other ongoing behaviors through a context-dependent integration of sensory stimuli. In vertebrates, the mechanisms underlying behavioral selection are poorly understood. Here, we show that ongoing swimming in zebrafish is suppressed by escape. The selection of escape over swimming is mediated by switching between two distinct motoneuron pools. A hardwired circuit mediates this switch by acting as a clutch-like mechanism to disengage the swimming motoneuron pool and engage the escape motoneuron pool. Threshold for escape initiation is lowered and swimming suppression is prolonged by endocannabinoid neuromodulation. Thus, our results reveal a novel cellular mechanism involving a hardwired circuit supplemented with endocannabinoids acting as a clutch-like mechanism to engage/disengage distinct motor pools to ensure behavioral selection and a smooth execution of motor action sequences in a vertebrate system.


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"