JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

CX3CR1 Disruption Differentially Influences Dopaminergic Neuron Degeneration in Parkinsonian Mice Depending on the Neurotoxin and Route of Administration.

Parkinson's disease (PD) is characterized by progressive degeneration of dopaminergic neurons accompanied by an inflammatory reaction. The neuron-derived chemokine fractalkine (CX3CL1) is an exclusive ligand for the receptor CX3CR1 expressed on microglia. The CX3CL1/CX3CR1 signaling is important for sustaining microglial activity. Using a recently developed PD model, in which the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxin is delivered intranasally, we hypothesized that CX3CR1 could play a role in neurotoxicity and glial activation. For this, we used CX3CR1 knock-in mice and compared results with those obtained using the classical PD models through intraperitonal MPTP or intrastriatal 6-hydroxydopamine (6-OHDA). The striatum from all genotypes (CX3CR1(+/+), CX3CR1(+/GFP) and CX3CR1-deficient mice) showed a significant dopaminergic depletion after intranasal MPTP inoculation. In contrast to that, we could not see differences in the number of dopaminergic neurons in the substantia nigra of CX3CR1-deficient animals. Similarly, after 6-OHDA infusion, the CX3CR1 deletion decreased the amphetamine-induced turning behavior observed in CX3CR1(+/GFP) mice. After the 6-OHDA inoculation, a minor dopaminergic neuronal loss was observed in the substantia nigra from CX3CR1-deficient mice. Distinctly, a more extensive neuronal cell loss was observed in the substantia nigra after the intraperitoneal MPTP injection in CX3CR1 disrupted animals, corroborating previous results. Intranasal and intraperitoneal MPTP inoculation induced a similar microgliosis in CX3CR1-deficient mice but a dissimilar change in the astrocyte proliferation in the substantia nigra. Nigral astrocyte proliferation was observed only after intraperitoneal MPTP inoculation. In conclusion, intranasal MPTP and 6-OHDA lesion in CX3CR1-deficient mice yield no nigral dopaminergic neuron loss, linked to the absence of astroglial proliferation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app