Add like
Add dislike
Add to saved papers

Liver-selective distribution in rats supports the importance of active uptake into the liver via organic anion transporting polypeptides (OATPs) in humans.

Organic anion transporting polypeptide (OATP) 1B1 and 1B3 are key molecules that are involved in hepatic uptake related to drug elimination, and OATP-mediated drug interactions are of clinical concern. In this study, with an aim to determine a cutoff value for the potential involvement of OATP, we collected data on the distribution of 12 human OATP and 24 non-OATP radiolabeled substrates in rats. The OATP substrates exhibited a higher tissue-to-plasma ratio (Kp) in the liver than that in the other tissues. As an index of liver-specific distribution, a hepatic Kp ratio (the ratio of Kp in the liver to that in other tissues) was introduced, and a hepatic Kp ratio <10 was proposed as a criterion for excluding the involvement of OATP in vivo. Approximately 20% of the non-OATP substrates as well as 100% of the OATP substrates exceeded the cutoff value of 10; therefore, further in vitro transport studies will be required to decide whether to conduct clinical drug interaction studies. Since distribution studies are usually conducted in rats during drug development, the use of a hepatic Kp ratio is practical and could refine the current decision tree for selecting OATP substrates in the drug interaction guidance/guidelines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app