Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

NMR Spectroscopic Studies of the Conformational Ensembles of Intrinsically Disordered Proteins.

Intrinsically disordered proteins (IDPs) are characterized by substantial conformational flexibility and thus not amenable to conventional structural biology techniques. Given their inherent structural flexibility NMR spectroscopy offers unique opportunities for structural and dynamic studies of IDPs. The past two decades have witnessed significant development of NMR spectroscopy that couples advances in spin physics and chemistry with a broad range of applications. This chapter will summarize key advances in NMR methodology. Despite the availability of efficient (multi-dimensional) NMR experiments for signal assignment of IDPs it is discussed that NMR of larger and more complex IDPs demands spectral simplification strategies capitalizing on specific isotope-labeling strategies. Prototypical applications of isotope labeling-strategies are described. Since IDP-ligand association and dissociation processes frequently occur on time scales that are amenable to NMR spectroscopy we describe in detail the application of CPMG relaxation dispersion techniques to studies of IDP protein binding. Finally, we demonstrate that the complementary usage of NMR and EPR data provide a more comprehensive picture about the conformational states of IDPs and can be employed to analyze the conformational ensembles of IDPs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app