Add like
Add dislike
Add to saved papers

Over-expression of miR-31 or loss of KCNMA1 leads to increased cisplatin resistance in ovarian cancer cells.

Ovarian cancers have a high mortality rate; this is in part due to resistance to the platinum-based compounds used in chemotherapy. In this paper, we assess the role of microRNA-31 in the development of chemoresistance to cisplatin. We used previous data from microarray experiments to identify potential microRNAs (miRNAs) involved in chemoresistance. The functional significance of these microRNAs was tested using miRNA mimics. We used RNA-seq to identify pathways and genes de-regulated in the resistant cell line and then determined their role using RNAi. Analysis of publically available datasets reveals the potential clinical significance. Our data show that miR-31 is increased, whilst potassium channel calcium activated large conductance subfamily M alpha, member 1 (KCNMA1), a subunit of calcium-regulated big potassium (BK) channels, is reduced in resistant ovarian cells. Over-expression of miR-31 increased resistance, as did knockdown of KCNMA1 or inhibition of BK channels. This suggests that these genes directly modulate cisplatin response. Our data also suggest that miR-31 represses KCNMA1 expression. Comparing the levels of miR-31 and KCNMA1 to cisplatin resistance in the NCI60 panel or chemoresistance in cohorts of ovarian cancer tumours reveals correlations that support a role for these genes in vitro and in vivo. Here we show that miR-31 and KCNMA1 are involved in mediating cisplatin resistance in ovarian cancer. Our data gives a new insight into the potential mechanisms to therapeutically target in cisplatin resistance common to ovarian cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app