Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

3D architecture constructed via the confined growth of MoS2 nanosheets in nanoporous carbon derived from metal-organic frameworks for efficient hydrogen production.

Nanoscale 2015 November 22
The design and synthesis of robust, high-performance and low-cost three-dimensional (3D) hierarchical structured materials for the electrochemical reduction of water to generate hydrogen is of great significance for practical water splitting applications. In this study, we develop an in situ space-confined method to synthesize an MoS2-based 3D hierarchical structure, in which the MoS2 nanosheets grow in the confined nanopores of metal-organic frameworks (MOFs)-derived 3D carbons as electrocatalysts for efficient hydrogen production. Benefiting from its unique structure, which has more exposed active sites and enhanced conductivity, the as-prepared MoS2/3D nanoporous carbon (3D-NPC) composite exhibits remarkable electrocatalytic activity for the hydrogen evolution reaction (HER) with a small onset overpotential of ∼0.16 V, large cathodic currents, small Tafel slope of 51 mV per decade and good durability. We anticipate that this in situ confined growth provides new insights into the construction of high performance catalysts for energy storage and conversion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app