Add like
Add dislike
Add to saved papers

Relaxation-compensated CEST-MRI at 7 T for mapping of creatine content and pH--preliminary application in human muscle tissue in vivo.

NMR in Biomedicine 2015 November
The small biomolecule creatine is involved in energy metabolism. Mapping of the total creatine (mostly PCr and Cr) in vivo has been done with chemical shift imaging. Chemical exchange saturation transfer (CEST) allows an alternative detection of creatine via water MRI. Living tissue exhibits CEST effects from different small metabolites, including creatine, with four exchanging protons of its guanidinium group resonating about 2 ppm from the water peak and hence contributing to the amine proton CEST peak. The intermediate exchange rate (≈ 1000 Hz) of the guanidinium protons requires high RF saturation amplitude B1. However, strong B1 fields also label semi-solid magnetization transfer (MT) effects originating from immobile protons with broad linewidths (~kHz) in the tissue. Recently, it was shown that endogenous CEST contrasts are strongly affected by the MT background as well as by T1 relaxation of the water protons. We show that this influence can be corrected in the acquired CEST data by an inverse metric that yields the apparent exchange-dependent relaxation (AREX). AREX has some useful linearity features that enable preparation of both concentration, and--by using the AREX-ratio of two RF irradiation amplitudes B1--purely exchange-rate-weighted CEST contrasts. These two methods could be verified in phantom experiments with different concentration and pH values, but also varying water relaxation properties. Finally, results from a preliminary application to in vivo CEST imaging data of the human calf muscle before and after exercise are presented. The creatine concentration increases during exercise as expected and as confirmed by (31)P NMR spectroscopic imaging. However, the estimated concentrations obtained by our method were higher than the literature values: cCr,rest=24.5±3.74mM to cCr,ex=38.32±13.05mM. The CEST-based pH method shows a pH decrease during exercise, whereas a slight increase was observed by (31)P NMR spectroscopy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app