JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Convenient Route to Well-Dispersed Cu2O Nanospheres and Their Use as Photocatalysts.

A simple and facile method was developed to synthesize well-dispersed cuprous oxide nanospheres with uniform morphology and the size in the range of 400-600 nm. Cuprous oxide nanospheres were obtained through the chemical reduction of copper acetate by fructose in the presence of ethylene glycol and de-ionized water. X-ray powder diffraction (XRD), Energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), UV-Vis spectroscopy (UV-Vis) and transmission electron microscopy (TEM) as well as high-resolution transmission electron microscopy (HRTEM) were used to characterize the obtained nanoparticles. The influence of time, temperature and the solvent on the formation of cuprous oxide was investigated. The growth process of cuprous oxide was analyzed and the mechanism of crystal growth was proposed. The photocatalytic activity of degradation of methyl orange (MO) under visible light irradiation was also investigated. It was found that the product of cuprous oxide had efficient catalytic for degradation MO.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app