JOURNAL ARTICLE

Amine-Oxide Hybrid Materials for CO2 Capture from Ambient Air

Stephanie A Didas, Sunho Choi, Watcharop Chaikittisilp, Christopher W Jones
Accounts of Chemical Research 2015 October 20, 48 (10): 2680-7
26356307
Oxide supports functionalized with amine moieties have been used for decades as catalysts and chromatographic media. Owing to the recognized impact of atmospheric CO2 on global climate change, the study of the use of amine-oxide hybrid materials as CO2 sorbents has exploded in the past decade. While the majority of the work has concerned separation of CO2 from dilute mixtures such as flue gas from coal-fired power plants, it has been recognized by us and others that such supported amine materials are also perhaps uniquely suited to extract CO2 from ultradilute gas mixtures, such as ambient air. As unique, low temperature chemisorbents, they can operate under ambient conditions, spontaneously extracting CO2 from ambient air, while being regenerated under mild conditions using heat or the combination of heat and vacuum. This Account describes the evolution of our activities on the design of amine-functionalized silica materials for catalysis to the design, characterization, and utilization of these materials in CO2 separations. New materials developed in our laboratory, such as hyperbranched aminosilica materials, and previously known amine-oxide hybrid compositions, have been extensively studied for CO2 extraction from simulated ambient air (400 ppm of CO2). The role of amine type and structure (molecular, polymeric), support type and structure, the stability of the various compositions under simulated operating conditions, and the nature of the adsorbed CO2 have been investigated in detail. The requirements for an effective, practical air capture process have been outlined and the ability of amine-oxide hybrid materials to meet these needs has been discussed. Ultimately, the practicality of such a "direct air capture" process is predicated not only on the physicochemical properties of the sorbent, but also how the sorbent operates in a practical process that offers a scalable gas-solid contacting strategy. In this regard, the utility of low pressure drop monolith contactors is suggested to offer a practical mode of amine sorbent/air contacting for direct air capture.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
26356307
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"