Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Video-Audio Media
Add like
Add dislike
Add to saved papers

High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling.

Direct reprogramming of fibroblasts into cardiomyocytes by forced expression of cardiomyogenic factors, GMT (GATA4, Mef2C, Tbx5) or GHMT (GATA4, Hand2, Mef2C, Tbx5), has recently been demonstrated, suggesting a novel therapeutic strategy for cardiac repair. However, current approaches are inefficient. Here we demonstrate that pro-fibrotic signalling potently antagonizes cardiac reprogramming. Remarkably, inhibition of pro-fibrotic signalling using small molecules that target the transforming growth factor-β or Rho-associated kinase pathways converts embryonic fibroblasts into functional cardiomyocyte-like cells, with the efficiency up to 60%. Conversely, overactivation of these pro-fibrotic signalling networks attenuates cardiac reprogramming. Furthermore, inhibition of pro-fibrotic signalling dramatically enhances the kinetics of cardiac reprogramming, with spontaneously contracting cardiomyocytes emerging in less than 2 weeks, as opposed to 4 weeks with GHMT alone. These findings provide new insights into the molecular mechanisms underlying cardiac conversion of fibroblasts and would enhance efforts to generate cardiomyocytes for clinical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app