Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Higher convection volume exchange with online hemodiafiltration is associated with survival advantage for dialysis patients: the effect of adjustment for body size.

Mortality remains high for hemodialysis patients. Online hemodiafiltration (OL-HDF) removes more middle-sized uremic toxins but outcomes of individual trials comparing OL-HDF with hemodialysis have been discrepant. Secondary analyses reported higher convective volumes, easier to achieve in larger patients, and improved survival. Here we tested different methods to standardize OL-HDF convection volume on all-cause and cardiovascular mortality compared with hemodialysis. Pooled individual patient analysis of four prospective trials compared thirds of delivered convection volume with hemodialysis. Convection volumes were either not standardized or standardized to weight, body mass index, body surface area, and total body water. Data were analyzed by multivariable Cox proportional hazards modeling from 2793 patients. All-cause mortality was reduced when the convective dose was unstandardized or standardized to body surface area and total body water; hazard ratio (95% confidence intervals) of 0.65 (0.51-0.82), 0.74 (0.58-0.93), and 0.71 (0.56-0.93) for those receiving higher convective doses. Standardization by body weight or body mass index gave no significant survival advantage. Higher convection volumes were generally associated with greater survival benefit with OL-HDF, but results varied across different ways of standardization for body size. Thus, further studies should take body size into account when evaluating the impact of delivered convection volume on mortality end points.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app