Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

TGF-β1 epigenetically modifies Thy-1 expression in primary lung fibroblasts.

Idiopathic pulmonary fibrosis is a progressive lung disease that increases in incidence with age. We identified a profibrotic lung phenotype in aging mice characterized by an increase in the number of fibroblasts lacking the expression of thymocyte differentiation antigen 1 (Thy-1) and an increase in transforming growth factor (TGF)-β1 expression. It has been shown that Thy-1 expression can be epigenetically modified. Lung fibroblasts (PLFs) were treated with TGF-β1 ± DNA methyltransferase (DNMT) inhibitor 5-aza-2'-deoxycytidine (5-AZA) and analyzed for Thy-1 gene and protein expression, DNMT protein expression, and activity. α-Smooth muscle actin (α-SMA) and collagen type 1 (Col1A1) gene and protein expression was assessed. PLFs were transfected with DNMT1 silencing RNA ± TGF-β1. TGF-β1 inhibited Thy-1 gene and protein expression in PLFs, and cotreatment with 5-AZA ameliorated this effect and appeared to inhibit DNMT1 activation. TGF-β1 induced Thy-1 promoter methylation as assessed by quantitative methyl PCR. Treatment with 5-AZA attenuated TGF-β1-induced Col1A1 gene and protein expression and α-SMA gene expression (but not α-SMA protein expression). Inhibiting DNMT1 with silencing RNA attenuated TGF-β1-induced DNMT activity and its downstream suppression of Thy-1 mRNA and protein expression as well as inhibited α-SMA mRNA and Col1A1 mRNA and protein expression, and showed a decreased trend in Thy-1 promoter methylation. Immunofluorescence for α-SMA suggested that 5-AZA inhibited stress fiber formation. These findings suggest that TGF-β1 epigenetically regulates lung fibroblast phenotype through methylation of the Thy-1 promoter. Targeted inhibition of DNMT in the right clinical context might prevent fibroblast to myofibroblast transdifferentiation and collagen deposition, which in turn could prevent fibrogenesis in the lung and other organs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app