JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Isoliquiritigenin Inhibits Interferon-γ-Inducible Genes Expression in Hepatocytes through Down-Regulating Activation of JAK1/STAT1, IRF3/MyD88, ERK/MAPK, JNK/MAPK and PI3K/Akt Signaling Pathways.

BACKGROUND & AIMS: The high expression levels of interferon-γ (IFN-γ)-inducible genes correlate positively with liver diseases. The present study aimed to explore the effect of isoliquiritigenin (ISL) on the expression of genes induced by IFN-γ in vitro, and to elucidate the underlying molecular mechanisms.

METHODS: HepG2 and L02 cells were divided into control, ISL, IFN-γ, and IFN-γ plus ISL groups. The cytotoxicity of compounds to cells was evaluated by Cell Counting Kit 8 (CCK8) assay; the expression levels of chemokine (C-X-C motif) ligand 9 (CXCL9), CXCL10, CXCL11, and interleukin-6 (IL-6) in cells and supernatant were measured by quantitative real time polymerase chain reaction (qRT-PCR) and ELISA, respectively. Moreover, western blot was used to examine the phosphorylated levels of janus kinase (JAK)/signal transducer and activator of transcription 1 (STAT1), nuclear factor (NF)-κB, interferon regulatory factor 3 (IRF3)/myeloid differentiation factor 88 (MyD88), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Protein Kinase B (Akt) in HepG2 and L02 cells exposed to ISL, IFN-γ and IFN-γ plus ISL.

RESULTS: The results showed that IFN-γ treatment induced the expression of CXCL9, CXCL10, CXCL11, and IL-6 in HepG2 and LO2 cells, which could be significantly and dose-dependently inhibited by ISL treatment (P < 0.05 or P < 0.01), but the inhibitory effect of ISL on IL-6 expression was not so good as on CXCL9, CXCL10, and CXCL11 expression. Furthermore, ISL treatment dose-dependently inhibited the activation of JAK1/STAT1, IRF3/MyD88, extracellular signal-regulated kinase (ERK)/MAPK, c-Jun N-terminal kinase (JNK)/MAPK, and PI3K/Akt signaling pathways (P < 0.05), but had no effect on the activation of JAK2/STAT1, NF-κB and p38/MAPK signaling pathways.

CONCLUSION: We demonstrate that ISL inhibits IFN-γ-induced inflammation in hepatocytes via influencing the activation of JAK1/STAT1, IRF3/MyD88, ERK/MAPK, JNK/MAPK, and PI3K/Akt signaling pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app