JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Blockade of CD40 ligand for intercellular communication reduces hypertension, placental oxidative stress, and AT1-AA in response to adoptive transfer of CD4+ T lymphocytes from RUPP rats.

Preeclampsia (PE) is associated with altered immune activation during pregnancy. We have previously shown that adoptive transfer of CD4(+) T cells from the reduced uterine perfusion pressure (RUPP) rat model of PE increases blood pressure, oxidative stress (ROS), and inflammation in normal pregnant recipient rats. The objective of this study was to determine if blockade of communication via the CD40-CD40 ligand (CD40L) interaction between placental ischemia-induced CD4(+) T cells with endogenous normal pregnant (NP) cells would improve pathophysiology that was previously observed in NP recipient rats of RUPP CD4(+) T cells. Splenic CD4(+) T lymphocytes were magnetically separated, incubated with 2.5 μg/ml anti-CD40 ligand (αCD40L) overnight, and transferred into NP rats on day 12 of gestation (NP+RUPP CD4(+) T+anti-CD40L). On day 19 of gestation, blood pressure (MAP), blood, and tissues were collected. MAP was 99 ± 2 in NP (n = 13), 116 ± 4 in NP+RUPP CD4(+) T cells (n = 7; P < 0.01); MAP only increased to 104 ± 2 in NP+RUPP CD4(+) T cells+CD40L (n = 24) (P < 0.05 vs. NP+RUPP CD4(+) T cells). Mechanisms of hypertension in response to RUPP CD4(+) T cells include endothelin-1 (ET-1), ROS, and angiotensin II type I receptor (AT1-AA) were analyzed. Inhibition of CD40L binding reduced placental ET-1 to 2.3-fold above NP rats and normalized placental ROS from 318.6 ± 89 in NP+RUPP CD4(+) T cells (P < 0.05) to 118.7 ± 24 in NP+RUPP CD4(+) T+anti-CD40L (P < 0.05). AT1-AA was also normalized with inhibition of CD40L. These data suggest that placental ischemia-induced T-cell communication via the CD40L is one important mechanism leading to much of the pathophysiology of PE.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app