JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Respiratory Control in the mdx Mouse Model of Duchenne Muscular Dystrophy.

Duchenne muscular dystrophy (DMD) is a genetic disease caused by defects in the dystrophin gene resulting in loss of the structural protein dystrophin. Patients have reduced diaphragm functional capacity due to progressive muscle weakness. Respiratory morbidity in DMD is further characterised by hypoxaemic periods due to hypoventilation. DMD patients die prematurely due to respiratory and cardiac failure. In this study, we examined respiratory function in young adult male mdx (dystrophin deficient) mice (C57BL/10ScSn-Dmd(mdx)/J; n = 10) and in wild-type controls (WT; C57BL/10ScSnJ; n = 11). Breathing was assessed in unrestrained, unanaesthetised animals by whole-body plethysmography. Ventilatory parameters were recorded during air breathing and during exposure to acute hypoxia (F(i)O(2) = 0.1, 20 min). Data for the two groups of animals were compared using Student's t tests. During normoxic breathing, mdx mice had reduced breathing frequency (p = 0.011), tidal volume (p = 0.093) and minute ventilation (p = 0.033) compared to WT. Hypoxia increased minute ventilation in WT and mdx animals. Mdx mice had a significantly increased ventilatory response to hypoxia which manifest as an elevated % change from baseline for minute ventilation (p = 0.0015) compared to WT. We conclude that mdx mice have impaired normoxic ventilation suggestive of hypoventilation. Furthermore, mdx mice have an enhanced hypoxic ventilatory response compared to WT animals which we speculate may be secondary to chronic hypoxaemia. Our results indicate that a significant respiratory phenotype is evident as early as 8 weeks in the mdx mouse model of DMD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app