JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

A Duplicated ESAT-6 Region of ESX-5 Is Involved in Protein Export and Virulence of Mycobacteria.

The ESX-5 secretion system of Mycobacterium tuberculosis is important for bacterial virulence and for the secretion of the large PE/PPE protein family, whose genes constitute 10% of the M. tuberculosis genome. A four-gene region of the ESX-5 system is duplicated three times in the M. tuberculosis genome, but the functions of these duplicates are unknown. Here we investigated one of these duplicates: the region carrying the esxI, esxJ, ppe15, and pe8 genes (ESX-5a). An ESX-5a deletion mutant in the model system M. marinum background was deficient in the secretion of some members of the PE/PPE family of proteins. Surprisingly, we also identified other proteins that are not members of this family, thus expanding the range of ESX-5 secretion substrates. In addition, we demonstrated that ESX-5a is important for the virulence of M. marinum in the zebrafish model. Furthermore, we showed the role of the M. tuberculosis ESX-5a region in inflammasome activation but not host cell death induction, which is different from the case for the M. tuberculosis ESX-5 system. In conclusion, the ESX-5a region is nonredundant with its ESX-5 paralog and is necessary for secretion of a specific subset of proteins in M. tuberculosis and M. marinum that are important for bacterial virulence of M. marinum. Our findings point to a role for the three ESX-5 duplicate regions in the selection of substrates for secretion via ESX-5, and hence, they provide the basis for a refined model of the molecular mechanism of this type VII secretion system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app