Animal derived surfactant extract versus protein free synthetic surfactant for the prevention and treatment of respiratory distress syndrome

Stephanie Ardell, Robert H Pfister, Roger Soll
Cochrane Database of Systematic Reviews 2015 August 24, 8: CD000144

BACKGROUND: A wide variety of surfactant preparations have been developed and tested including synthetic surfactants and surfactants derived from animal sources. Although clinical trials have demonstrated that both synthetic surfactant and animal derived surfactant preparations are effective, comparison in animal models has suggested that there may be greater efficacy of animal derived surfactant products, perhaps due to the protein content of animal derived surfactant.

OBJECTIVES: To compare the effect of animal derived surfactant to protein free synthetic surfactant preparations in preterm infants at risk for or having respiratory distress syndrome (RDS).

SEARCH METHODS: Searches were updated of the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library (2014), PubMed, CINAHL and EMBASE (1975 through November 2014). All languages were included.

SELECTION CRITERIA: Randomized controlled trials comparing administration of protein free synthetic surfactants to administration of animal derived surfactant extracts in preterm infants at risk for or having respiratory distress syndrome were considered for this review.

DATA COLLECTION AND ANALYSIS: Data collection and analysis were conducted according to the standards of the Cochrane Neonatal Review Group.

MAIN RESULTS: Fifteen trials met the inclusion criteria. The meta-analysis showed that the use of animal derived surfactant rather than protein free synthetic surfactant resulted in a significant reduction in the risk of pneumothorax [typical relative risk (RR) 0.65, 95% CI 0.55 to 0.77; typical risk difference (RD) -0.04, 95% CI -0.06 to -0.02; number needed to treat to benefit (NNTB) 25; 11 studies, 5356 infants] and a marginal reduction in the risk of mortality (typical RR 0.89, 95% CI 0.79 to 0.99; typical RD -0.02, 95% CI -0.04 to -0.00; NNTB 50; 13 studies, 5413 infants).Animal derived surfactant was associated with an increase in the risk of necrotizing enterocolitis [typical RR 1.38, 95% CI 1.08 to 1.76; typical RD 0.02, 95% CI 0.01 to 0.04; number needed to treat to harm (NNTH) 50; 8 studies, 3462 infants] and a marginal increase in the risk of any intraventricular hemorrhage (typical RR 1.07, 95% CI 0.99 to 1.15; typical RD 0.02, 95% CI 0.00 to 0.05; 10 studies, 5045 infants) but no increase in Grade 3 to 4 intraventricular hemorrhage (typical RR 1.08, 95% CI 0.91 to 1.27; typical RD 0.01, 95% CI -0.01 to 0.03; 9 studies, 4241 infants).The meta-analyses supported a marginal decrease in the risk of bronchopulmonary dysplasia or mortality associated with the use of animal derived surfactant preparations (typical RR 0.95, 95% CI 0.91 to 1.00; typical RD -0.03, 95% CI -0.06 to 0.00; 6 studies, 3811 infants). No other relevant differences in outcomes were noted.

AUTHORS' CONCLUSIONS: Both animal derived surfactant extracts and protein free synthetic surfactant extracts are effective in the treatment and prevention of respiratory distress syndrome. Comparative trials demonstrate greater early improvement in the requirement for ventilator support, fewer pneumothoraces, and fewer deaths associated with animal derived surfactant extract treatment. Animal derived surfactant may be associated with an increase in necrotizing enterocolitis and intraventricular hemorrhage, though the more serious hemorrhages (Grade 3 and 4) are not increased. Despite these concerns, animal derived surfactant extracts would seem to be the more desirable choice when compared to currently available protein free synthetic surfactants.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"