Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

MicroRNA-142-3p and microRNA-142-5p are downregulated in hepatocellular carcinoma and exhibit synergistic effects on cell motility.

Frontiers of Medicine 2015 September
MicroRNAs (miRNAs), an important class of small non-coding RNAs, regulate gene expression at the post-transcriptional level. miRNAs are involved in a wide range of biological processes and implicated in different diseases, including cancers. In this study, miRNA profiling and qRT-PCR validation revealed that miR-142-3p and miR-142-5p were significantly downregulated in hepatocellular carcinoma (HCC) and their expression levels decreased as the disease progressed. The ectopic expression of miR-142 significantly reduced HCC cell migration and invasion. Overexpression of either miR-142-3p or miR-142-5p suppressed HCC cell migration, and overexpression of both synergistically inhibited cell migration, which indicated that miR-142-3p and miR-142-5p may cooperatively regulate cell movement. miR-142-3p and miR-142-5p, which are mature miRNAs derived from the 3'- and 5'-strands of the precursor miR-142, target distinct pools of genes because of their different seed sequences. Pathway enrichment analysis showed a strong association of the putative gene targets of miR-142-3p and miR-142-5p with several cell motility-associated pathways, including those regulating actin cytoskeleton, adherens junctions, and focal adhesion. Importantly, a number of the putative gene targets were also significantly upregulated in human HCC cells. Moreover, overexpression of miR-142 significantly abrogated stress fiber formation in HCC cells and led to cell shrinkage. This study shows that mature miR-142 pairs collaboratively regulate different components of distinct signaling cascades and therefore affects the motility of HCC cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app