Understanding Trends in the Electrocatalytic Activity of Metals and Enzymes for CO2 Reduction to CO

Heine A Hansen, Joel B Varley, Andrew A Peterson, Jens K Nørskov
Journal of Physical Chemistry Letters 2013 February 7, 4 (3): 388-92
We develop a model based on density functional theory calculations to describe trends in catalytic activity for CO2 electroreduction to CO in terms of the adsorption energy of the reaction intermediates, CO and COOH. The model is applied to metal surfaces as well as the active site in the CODH enzymes and shows that the strong scaling between adsorbed CO and adsorbed COOH on metal surfaces is responsible for the persistent overpotential. The active site of the CODH enzyme is not subject to these scaling relations and optimizes the relative binding energies of these adsorbates, allowing for an essentially reversible process with a low overpotential.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"