Add like
Add dislike
Add to saved papers

Electrocatalytic CO2 Reduction with a Homogeneous Catalyst in Ionic Liquid: High Catalytic Activity at Low Overpotential.

We describe a new strategy for enhancing the efficiency of electrocatalytic CO2 reduction with a homogeneous catalyst, using a room-temperature ionic liquid as both the solvent and electrolyte. The electrochemical behavior of fac-ReCl(2,2'-bipyridine)(CO)3 in neat 1-ethyl-3-methylimidazolium tetracyanoborate ([emim][TCB]) was compared with that in acetonitrile containing 0.1 M [Bu4N][PF6]. Two separate one-electron reductions occur in acetonitrile (-1.74 and -2.11 V vs Fc(+/0)), with a modest catalytic current appearing at the second reduction wave under CO2. However, in [emim][TCB], a two-electron reduction wave appears at -1.66 V, resulting in a ∼0.45 V lower overpotential for catalytic reduction of CO2 to CO. Furthermore, the apparent CO2 reduction rate constant, kapp, in [emim][TCB] exceeds that in acetonitrile by over one order of magnitude (kapp = 4000 vs 100 M(-1) s(-1)) at 25 ± 3 °C. Supported by time-resolved infrared measurements, a mechanism is proposed in which an interaction between [emim](+) and the two-electron reduced catalyst results in rapid dissociation of chloride and a decrease in the activation energy for CO2 reduction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app