Add like
Add dislike
Add to saved papers

Reactivity of Carbon Dioxide on Nickel: Role of CO in the Competing Interplay between Oxygen and Graphene.

The catalytic conversion of carbon dioxide to synthetic fuels and other valuable chemicals is an issue of global environmental and economic impact. In this report we show by means of X-ray photoelectron spectroscopy in the millibar range that, on a Ni surface, the reduction of carbon dioxide is indirectly governed by the CO chemistry. While the growth of graphene and the carbide-graphene conversion can be controlled by selecting the reaction temperature, oxygen is mainly removed by CO, since oxygen reduction by hydrogen is a slow process on Ni. Even though there is still a consistent pressure gap with respect to industrial reaction conditions, the observed phenomena provide a plausible interpretation of the behavior of Ni/Cu based catalysts for CO2 conversion and account for a possible role of CO in the methanol synthesis process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app