Quantum Yield of Polariton Emission from Hybrid Light-Matter States

Shaojun Wang, Thibault Chervy, Jino George, James A Hutchison, Cyriaque Genet, Thomas W Ebbesen
Journal of Physical Chemistry Letters 2014 April 17, 5 (8): 1433-9
The efficiency of light-matter strong coupling is tuned by precisely varying the spatial position of a thin layer of cyanine dye J-aggregates in Fabry-Perot microcavities, and their photophysical properties are determined. Placing the layer at the cavity field maximum affords an interaction energy (Rabi splitting) of 503 meV, a 62% increase over that observed if the aggregates are simply spread evenly through the cavity, placing the system in the ultrastrong coupling regime. The fluorescence quantum yield of the lowest polaritonic state P- integrated over k-space is found to be ∼10(-2). The same value can be deduced from the 1.4 ps lifetime of P- measured by femtosecond transient absorption spectroscopy and the calculated radiative decay rate constant. Thus, the polariton decay is dominated by nonradiative processes, in contrast with what might be expected from the small effective mass of the polaritons. These findings provide a deeper understanding of hybrid light-molecule states and have implications for the modification of molecular and material properties by strong coupling.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"