Add like
Add dislike
Add to saved papers

Molecular Catalysis of the Electrochemical and Photochemical Reduction of CO2 with Earth-Abundant Metal Complexes. Selective Production of CO vs HCOOH by Switching of the Metal Center.

Molecular catalysis of carbon dioxide reduction using earth-abundant metal complexes as catalysts is a key challenge related to the production of useful products--the "solar fuels"--in which solar energy would be stored. A direct approach using sunlight energy as well as an indirect approach where sunlight is first converted into electricity could be used. A Co(II) complex and a Fe(III) complex, both bearing the same pentadentate N5 ligand (2,13-dimethyl-3,6,9,12,18-pentaazabicyclo[12.3.1]octadeca-1(18),2,12,14,16-pentaene), were synthesized, and their catalytic activity toward CO2 reduction was investigated. Carbon monoxide was formed with the cobalt complex, while formic acid was obtained with the iron-based catalyst, thus showing that the catalysis product can be switched by changing the metal center. Selective CO2 reduction occurs under electrochemical conditions as well as photochemical conditions when using a photosensitizer under visible light excitation (λ > 460 nm, solvent acetonitrile) with the Co catalyst. In the case of the Fe catalyst, selective HCOOH production occurs at low overpotential. Sustained catalytic activity over long periods of time and high turnover numbers were observed in both cases. A catalytic mechanism is suggested on the basis of experimental results and preliminary quantum chemistry calculations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app