Add like
Add dislike
Add to saved papers

The role of the meniscotibial ligament in posteromedial rotational knee stability.

PURPOSE: Tears of the posterior horn of the medial meniscus (PHMM) are very common in the ACL-deficient knee. Specific lesions of the PHMM have been described in the setting of ACL rupture: ramp lesions and injuries to the meniscotibial ligament. There are little data available regarding the role these lesions play in knee instability. The aim of this study is to analyse the biomechanical consequences of ramp and meniscotibial ligament lesions on knee stability. Our hypothesis was that these lesions would cause increased instability in the setting of ACL rupture.

METHODS: A cadaveric study was undertaken: ten knees were included for analysis. The biomechanical repercussions of different meniscoligamentous injuries were studied in four stages: stage 1 involved testing the intact knee, stage 2 after transection of the ACL, stage 3 following creation of a ramp lesion, and stage 4 after detachment of the meniscotibial ligament. Four parameters were measured during the experiment: anterior tibial translation under a force of 134 N, internal and external tibial rotation under a torque of 5 Nm, and valgus angulation under a torque of 10 Nm. Measurements were taken in four knee flexion positions: 0° or full extension, 30°, 70°, and 90° of flexion.

RESULTS: There was a statistically significant increase in anterior tibial translation for stage 2 (6.8 ± 1.3 mm, p ≤ 0.001), stage 3 (9.4 ± 1.3 mm, p ≤ 0.001), and stage 4 (9.3 ± 1.3 mm, p ≤ 0.001) compared to stage 1. There was no significant difference between stage 2 and stage 3 (2.6 mm, n.s.) or stage 4 (2.5 mm, n.s.). We did, however, demonstrate an increase in anterior tibial translation of 2.6 mm after the creation on a lesion of the PHMM compared to isolated division of the ACL, for all flexion angles combined. There was an increase in internal tibial rotation between stage 1 and stage 4 (3.2° ± 0.7°, p ≤ 0.001) and between stage 2 and stage 4 (2.0° ± 0.7°, p = 0.023). A significant difference was demonstrated for external rotation under 5 Nm torque between stages 4 and 1 (2.2° ± 0.5°, p ≤ 0.001) and between stages 4 and 2 (1.7° ± 0.5°, p = 0.007) for all knee flexion angles combined. No created lesion had a significant effect on medial laxity under a 10-Nm valgus torque at any degree of knee flexion.

CONCLUSION: Lesions of the posterior horn of the medial meniscus are frequent in cases of anterior cruciate ligament rupture. These lesions appear to play a significant role in knee stability. Ramp lesions increase the forces in the ACL, and the PHMM is a secondary restraint to anterior tibial translation. Lesions of the meniscotibial ligament may increase rotatory instability of the knee.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app