Add like
Add dislike
Add to saved papers

High Yield Ultrafast Intramolecular Singlet Exciton Fission in a Quinoidal Bithiophene.

We report the process of singlet exciton fission with high-yield upon photoexcitation of a quinoidal thiophene molecule. Efficient ultrafast triplet photogeneration and its yield are determined by photoinduced triplet-triplet absorption, flash photolysis triplet lifetime measurements, as well as by femtosecond time-resolved transient absorption and fluorescence methods. These experiments show that optically excited quinoidal bithiophene molecule undergoes ultrafast formation of the triplet-like state with the lifetime ∼57 μs. CASPT2 and RAS-SF calculations have been performed to support the experimental findings. To date, high singlet fission rates have been reported for crystalline and polycrystalline materials, whereas for covalently linked dimers and small oligomers it was found to be relatively small. In this contribution, we show an unprecedented quantum yield of intramolecular singlet exciton fission of ∼180% for a quinoidal bithiophene system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app