Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

HTLV-1-associated adult T cell leukemia is highly susceptible to Navitoclax due to enhanced Bax expression.

Over-expression of Bcl-2, Bcl-xL and Bcl-w is frequently associated with cancer resistance to chemotherapy. Navitoclax (ABT-263), an orally bio-available small-molecule mimetic of the Bcl-2 homology domain 3, specifically inhibits Bcl-2, Bcl-xL and Bcl-w. Despite promising results obtained from the clinical trials, the use of Navitoclax in patients is dose-limited due to induction of death of platelets via inhibition of Bcl-xL and subsequent thrombocytopenia. This side effect limits the use of Navitoclax in low doses and to very sensitive tumors. In this study, we show that HTLV-1-associated adult T-cell leukemia/lymphoma (ATL) cells, which over-express Bcl-2, Bcl-xL and Bcl-w, show a 10- to 20-fold higher sensitivity (EC50 = ∼ 25-50 nM) to Navitoclax compared to non-HTLV-1-associated leukemic cells (EC50 = ∼ 1 μM). Investigation of the molecular mechanisms revealed that the HTLV-1 oncogenic protein Tax up-regulates expression of the pro-apoptotic protein Bax which enhances the therapeutic efficacy of Navitoclax. In addition, we show that agents that inhibit the transcription elongation or translation initiation such as Wogonin and Roc-A can further decrease the effective dose of Navitoclax. Our study suggests that HTLV-1 ATL may be a good candidate disease for low dose Navitoclax therapy and probably with less risk of thrombocytopenia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app