JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The R263K substitution in HIV-1 subtype C is more deleterious for integrase enzymatic function and viral replication than in subtype B.

AIDS 2015 July 32
OBJECTIVES: Dolutegravir is an integrase strand-transfer inhibitor that has shown unprecedented robustness against the emergence of HIV drug-resistant strains in treatment-naive individuals. The R263K substitution in integrase was identified through culture selection as a resistance-associated substitution for dolutegravir and was recently detected in two treatment-experienced participants in the SAILING clinical trial, who experienced dolutegravir-based treatment failure, one of whom was infected by a subtype C virus. The objective of this study was to characterize the R263K substitution in HIV-1 subtype C integrase.

DESIGN AND METHODS: We used cell-free strand transfer assays and tissue culture experiments to characterize the R263K substitution in HIV-1 subtype C integrase in comparison with subtype B.

RESULTS: Cell-free biochemical assays showed that the R263K substitution diminished subtype C integrase strand-transfer activity by decreasing the affinity of integrase for target DNA. Similarly, both viral infectiousness and replication capacity were reduced by the R263K substitution in tissue culture. Decrease in enzyme activity and viral infectiousness exceeded 35 and 50%, respectively - significantly more than in HIV-1 subtype B. R263K in HIV-1 subtype C also conferred low levels of resistance against dolutegravir and high levels of cross-resistance against elvitegravir, but not raltegravir.

CONCLUSIONS: The R263K substitution is more deleterious to integrase strand-transfer activity and viral infectiousness in HIV-1 subtype C than in subtype B. Our results suggest that cross-resistance may prevent treatment-experienced individuals who are experiencing treatment failure with dolutegravir from being subsequently treated with elvitegravir.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app