Add like
Add dislike
Add to saved papers

A statistical approach to understand the role of inclusions on the fatigue resistance of superelastic Nitinol wire and tubing.

Superelastic wires and diamond-shaped stent surrogates were manufactured from Nitinol rods and tubing, respectively, from five different mill product suppliers - Standard VAR, Standard VIM, Standard VIM+VAR, Process-Optimized VIM+VAR, and High-Purity VAR. High-cycle fatigue tests up to 10(7) cycles were conducted under tension-tension conditions for wires and bending conditions for diamonds. These materials were compared under both testing methods at 37°C with 6% prestrain and 3% mean strain (unloading plateau) with a range of alternating strains. The High-Purity VAR material outperformed all alloys tested with a measured 10(7)-fatigue alternating strain limit of 0.32% for wire and 1.75% for diamonds. Process-Optimized VIM+VAR material was only slightly inferior to the High Purity VAR with a diamond alternating bending strain limit of 1.5%. These two "second generation" Nitinol alloys demonstrated approximately a 2× increase in 10(7)-cycle fatigue strain limit compared to all of the Standard-grade Nitinol alloys (VAR, VIM, and VIM+VAR) that demonstrated virtually indistinguishable fatigue performance. This statistically-significant increase in fatigue resistance in the contemporary alloys is ascribed to smaller inclusions in the Process-Optimized VIM+VAR material, and both smaller and fewer inclusions in the High-Purity VAR Nitinol.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app