Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inhibition of NADPH oxidase 4 induces apoptosis in malignant mesothelioma: Role of reactive oxygen species.

Oncology Reports 2015 October
Malignant pleural mesothelioma (MPM) is an aggressive tumor that is characterized by dysregulated growth and resistance to apoptosis. Reactive oxygen species (ROS)-generating NADPH oxidase (Nox) family enzymes have been suggested to be involved in neoplastic proliferation. Both the antioxidant N-acetylcysteine (NAC) and the inhibitor of flavoprotein-dependent oxidase, diphenylene iodonium (DPI), inhibited the cell viability of MPM cells in a dose-dependent manner. To examine whether Nox-mediated ROS generation confers antiapoptotic activity and thus a growth advantage to MPM cells, we analyzed the mRNA expression of Nox family members using quantitative RT-PCR in 7 MPM cell lines and a normal mesothelial cell line. Nox4 mRNA was expressed in all of the examined MPM cell lines, whereas little or no Nox2, Nox3 and Nox5 mRNA expression was detected. In 2 MPM cell lines, Nox4 mRNA expression was significantly higher than that in a normal mesothelial cell line. siRNAs targeting Nox4 suppressed ROS generation and cell viability in the MPM cell lines. In addition, DPI treatment and knockdown of Nox4 attenuated phosphorylation of AKT and ERK. Taken together, our results indicate that Nox4-mediated ROS, at least in part, transmit cell survival signals and their depletion leads to apoptosis, thus highlighting the Nox4-ROS-AKT signaling pathway as a potential therapeutic target for MPM treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app