Add like
Add dislike
Add to saved papers

Articular congruency of the Salto Talaris total ankle prosthesis.

BACKGROUND: The Salto-Talaris polyethylene articulating surface was designed to allow, but limit accessory motion. This investigation examines surface characteristics between the polyethylene bearing and anatomic talar component in various positions of function.

METHODS: A Salto Talaris talar prosthesis and matching polyethylene bearing were scanned to create digital solid body models and manipulated to assess surface contact during simulated gait. With computer micromanipulation of the component positions, the surface intersections were recorded for 15 different alignments.

RESULTS: The Salto Talaris has limited contact congruity with four points of contact in dorsiflexion, neutral, and plantarflexion. Lateral and medial translations showed only 2-point contact. The radii of curvatures between the talar component and polyethylene surfaces do not match. There was no sulcus contact yet component separation distance was small, suggesting increased loads.

CONCLUSION: Surface incongruency was measured based on computer model analysis which raises a concern of increased contact pressures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app