JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Impact of growth temperature and surface type on the resistance of Pseudomonas aeruginosa and Staphylococcus aureus biofilms to disinfectants.

Biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus on food-contact-surfaces represents a significant risk for the public health. In this context, the present study investigates the relationship between the environmental conditions of biofilm formation and the resistance to disinfectants. Therefore, a static biofilm reactor, called NEC-Biofilm System, was established in order to study the effect of growth temperature (20, 30 and 37°C), and of the surface type (stainless steel and polycarbonate), on biofilm resistance to disinfectants. These conditions were selected to mimic the biofilm formation on abiotic surfaces of food processing industries. The antibiofilm assays were performed on biofilms grown during 24 h. The results showed that the growth temperature influenced significantly the biofilm resistance to disinfectants. These data also revealed that the growth temperature has a significant effect on the biofilm structure of both bacteria. Furthermore, the increase of the biofilm growth temperature increased significantly the algD transcript level in sessile P. aeruginosa cells, whereas the icaA one was not affected in S. aureus cells. Overall, our findings show that the biofilm structure and matrix cannot fully explain the biofilm resistance to disinfectant agents. Nevertheless, it underlines the intimate link between environmental conditions, commonly met in food sectors, and the biofilm resistance to disinfectants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app