CLINICAL TRIAL, PHASE I
CLINICAL TRIAL, PHASE II
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Innate Immune Activity Correlates with CD4 T Cell-Associated HIV-1 DNA Decline during Latency-Reversing Treatment with Panobinostat.

Journal of Virology 2015 October
UNLABELLED: The pharmaceutical reactivation of dormant HIV-1 proviruses by histone deacetylase inhibitors (HDACi) represents a possible strategy to reduce the reservoir of HIV-1-infected cells in individuals treated with suppressive combination antiretroviral therapy (cART). However, the effects of such latency-reversing agents on the viral reservoir size are likely to be influenced by host immune responses. Here, we analyzed the immune factors associated with changes in proviral HIV-1 DNA levels during treatment with the potent HDACi panobinostat in a human clinical trial involving 15 cART-treated HIV-1-infected patients. We observed that the magnitude, breadth, and cytokine secretion profile of HIV-1-specific CD8 T cell responses were unrelated to changes in HIV-1 DNA levels in CD4 T cells during panobinostat treatment. In contrast, the proportions of CD3(-) CD56(+) total NK cells and CD16(+) CD56(dim) NK cells were inversely correlated with HIV-1 DNA levels throughout the study, and changes in HIV-1 DNA levels during panobinostat treatment were negatively associated with the corresponding changes in CD69(+) NK cells. Decreasing levels of HIV-1 DNA during latency-reversing treatment were also related to the proportions of plasmacytoid dendritic cells, to distinct expression patterns of interferon-stimulated genes, and to the expression of the IL28B CC genotype. Together, these data suggest that innate immune activity can critically modulate the effects of latency-reversing agents on the viral reservoir and may represent a target for future immunotherapeutic interventions in HIV-1 eradication studies.

IMPORTANCE: Currently available antiretroviral drugs are highly effective in suppressing HIV-1 replication, but the virus persists, despite treatment, in a latent form that does not actively express HIV-1 gene products. One approach to eliminate these cells, colloquially termed the "shock-and-kill" strategy, focuses on the use of latency-reversing agents that induce active viral gene expression in latently infected cells, followed by immune-mediated killing. Panobinostat, a histone deacetylase inhibitor, demonstrated potent activities in reversing HIV-1 latency in a recent pilot clinical trial and reduced HIV-1 DNA levels in a subset of patients. Interestingly, we found that innate immune factors, such as natural killer cells, plasmacytoid dendritic cells, and the expression patterns of interferon-stimulated genes, were most closely linked to a decline in the HIV-1 DNA level during treatment with panobinostat. These data suggest that innate immune activity may play an important role in reducing the residual reservoir of HIV-1-infected cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app