Journal Article
Review
Add like
Add dislike
Add to saved papers

Genome-wide studies to identify risk factors for kidney disease with a focus on patients with diabetes.

Chronic kidney disease (CKD) affects 10-13% of the general population and diabetic nephropathy (DN) is the leading cause of end-stage renal disease (ESRD). In addition to known demographic, biochemical and lifestyle risk factors, genetics is also contributing to CKD risk. In recent years, genome-wide association studies (GWAS) have provided a hypothesis-free approach to identify common genetic variants that could account for the genetic risk component of common diseases such as CKD. The identification of these variants might reveal the biological processes underlying renal impairment and could aid in improving risk estimates for CKD. This review aims to describe the methods as well as strengths and limitations of GWAS in CKD and to summarize the findings of recent GWAS in DN. Several loci and SNPs have been found to be associated with distinct CKD traits such as eGFR and albuminuria. For diabetic kidney disease, several loci were identified in different populations. Subsequent functional studies provided insights into the mechanism of action of some of these variants, such as UMOD or CERS2. However, overall, the results were ambiguous, and a few of the variants were not consistently replicated. In addition, the slow progression from albuminuria to ESRD could limit the power of longitudinal studies. The typically small effect size associated with genetic variants as well as the small portion of the variability of the phenotype explained by these variants limits the utility of genetic variants in improving risk prediction. Nevertheless, identifying these variants could give a deeper understanding of the molecular pathways underlying CKD, which in turn, could potentially lead to the development of new diagnostic and therapeutic tools.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app