EVALUATION STUDIES
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Biochar Supported Nanoscale Iron Particles for the Efficient Removal of Methyl Orange Dye in Aqueous Solutions.

The presence of organic contaminants in industrial effluents is an environmental concern of increasing global importance. One innovative technology for treating contaminated industrial effluents is nanoscale zero-valent iron supported on biochar (nZVI/BC). Based on Transmission Electron Microscopy, X-Ray Diffraction, and Brunauer-Emmett-Teller characterizations, the nZVI was well dispersed on the biochar and aggregation was dramatically reduced. Methyl orange (MO) served as the representative organic contaminant for verifying the effectiveness of the composite. Using decolorization efficiency as an indicator of treatment effectiveness, increasing doses of nZVI/BC yielded progressively better results with 98.51% of MO decolorized by 0.6 g/L of composite at an nZVI/BC mass ratio of 1:5. The superior decolorization efficiency of the nZVI/BC was attributed to the increase in the dispersion and reactivity of nZVI while biochar increasing the contact area with contaminant and the adsorption of composites. Additionally, the buffering function of acid-washed biochar could be in favor of maintaining the reactivity of nZVI. Furthermore, the aging nZVI/BC for 30 day was able to maintain the removal efficiency indicating that the oxidation of nZVI may be delayed in the presence of biochar. Therefore, the composite of nZVI/BC could represent an effective functional material for treating wastewater containing organic dyes in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app