Add like
Add dislike
Add to saved papers

Breast cancer targeted chemotherapy based on doxorubicin-loaded bombesin peptide modified nanocarriers.

Drug Delivery 2016 October
CONTEXT: Breast cancer is the most common cancer in female population. Breast cancer chemotherapy using doxorubicin (DOX) is well illustrated. However, a significant obstacle for successful chemotherapy with DOX is multidrug resistant (MDR) in breast cancer cells. Targeted nanocarriers have emerged as frontier research for the improvement of cancer chemotherapy.

OBJECTIVE: Bombesin (Bn)-modified, DOX-loaded solid lipid nanoparticles (Bn-DOX/SLNs) were constructed. Doxorubicin-resistant MCF-7/MDR human breast cancer cells and the cancer animal models were applied for the evaluation of the in vitro and in vivo anti-tumor effect of Bn-DOX/SLNs.

METHODS: Bn-conjugated lipids were synthesized. DOX was then loaded into Bn-modified SLNs. The physicochemical properties of the Bn-DOX/SLNs were investigated by particle size and zeta potential measurement, drug loading and drug-entrapment efficiency, and in vitro drug release behavior. In vitro cytotoxicity against MCF-7/MDR cells was investigated, and in vivo anti-tumor of SLNs was evaluated in human breast cancer mice models.

RESULTS: Bn-DOX/SLNs showed an excellent in vitro cytotoxicity and in vivo anti-tumor effect both in MCF-7/MDR breast cancer cells and breast cancer animal model.

CONCLUSION: The results demonstrated that Bn-DOX/SLNs reversed the resistance of doxorubicin, suggesting that chemotherapy using this kind of targeted nanocarriers may benefit human breast MDR cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app