JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Contribution of MINCLE-SYK Signaling to Activation of Primary Human APCs by Mycobacterial Cord Factor and the Novel Adjuvant TDB.

Journal of Immunology 2015 September 2
Trehalose-6,6-dimycolate (TDM), the mycobacterial cord factor, is an abundant cell wall glycolipid and major virulence factor of Mycobacterium tuberculosis. Its synthetic analog trehalose-6,6-dibehenate (TDB) is a new adjuvant currently in phase I clinical trials. In rodents, the C-type lectin receptors Mincle and Mcl bind TDB/TDM and activate macrophages and dendritic cells (DC) through the Syk-Card9 pathway. However, it is unknown whether these glycolipids activate human innate immune cells through the same mechanism. We performed in vitro analysis of TDB/TDM-stimulated primary human monocytes, macrophages, and DC; determined C-type lectin receptor expression; and tested the contribution of SYK, MINCLE, and MCL by small interfering RNA knockdown and genetic complementation. We observed a robust chemokine and cytokine release in response to TDB or TDM. MCSF-driven macrophages secreted higher levels of IL-8, IL-6, CCL3, CCL4, and CCL2 after stimulation with TDM, whereas DC responded more strongly to TDB and GM-CSF-driven macrophages were equally responsive to TDB and TDM. SYK kinase and the adaptor protein CARD9 were essential for glycolipid-induced IL-8 production. mRNA expression of MINCLE and MCL was high in monocytes and macrophages, with MINCLE and MCL proteins localized intracellularly under resting conditions. Small interfering RNA-mediated MINCLE or MCL knockdown caused on average reduced TDB- or TDM-induced IL-8 production. Conversely, retroviral expression in murine Mincle-deficient DC revealed that human MINCLE, but not MCL, was sufficient to confer responsiveness to TDB/TDM. Our study demonstrates that SYK-CARD9 signaling plays a key role in TDB/TDM-induced activation of innate immune cells in man as in mouse, likely by engagement of MINCLE.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app