Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Neuroprotective effect of astaxanthin against glutamate-induced cytotoxicity in HT22 cells: Involvement of the Akt/GSK-3β pathway.

Neuroscience 2015 September 11
Oxidative stress (OS) mediated the pathogenesis of Alzheimer's disease (AD). Astaxanthin (ATX) has been reported to exert antioxidant activities as well as neuroprotective effects in vivo and in vitro. But it is still unknown whether the Akt/glycogen synthase kinase-3β (GSK-3β) signaling mediated the neuroprotective effect of ATX in HT22 cells. Flow cytometric analysis was used to evaluate reactive oxygen species (ROS) generation. Caspase and PARP activity was measured. The expressions of heme oxygenase-1 (HO-1), nuclear factor-E2-related factor 2 (Nrf2), Bcl-2, Bax, apoptosis-inducing factor (AIF), cytochrome-c (Cyto-c), p-Akt and p-GSK-3β were evaluated to elucidate the underlying mechanism. Our results showed that ATX significantly attenuated glutamate-induced cell viability loss and lactate dehydrogenase (LDH) release, decreased the expression of caspase-3/8/9 activity and cleaved PARP, and suppressed the intracellular accumulation of ROS in HT22 cells after exposure to glutamate. ATX also increased the mitochondrial expression of AIF, Cyto-c as well as Bax while decreased Bcl-2. Moreover, ATX also induced the HO-1 expression in a dose and time-dependent manner, increased the antioxidant-responsive element (ARE) activity and nuclear Nrf2 expression. Furthermore, treatment with ATX restored the p-Akt and p-GSK-3β (Ser9) as well as HO-1 expression reduced by glutamate. This protective effect was partially blocked by the inhibitors lithium chloride treatment in HT22, indicating the involvement of Akt/GSK-3β inactivation during the neuroprotective effect of ATX. Our results provide the first evidence that ATX can protect glutamate-induced cytotoxicity in HT22 via attenuating caspase activation and mitochondrial dysfunction and modulating the Akt/GSK-3β signaling, indicating ATX may be useful for the treatment of neurodegenerative disorders such as AD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app