Comparative Study
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Developmental exposure to 50 parts-per-billion arsenic influences histone modifications and associated epigenetic machinery in a region- and sex-specific manner in the adult mouse brain.

Epidemiological studies report that arsenic exposure via drinking water adversely impacts cognitive development in children and, in adults, can lead to greater psychiatric disease susceptibility, among other conditions. While it is known that arsenic toxicity has a profound effect on the epigenetic landscape, very few studies have investigated its effects on chromatin architecture in the brain. We have previously demonstrated that exposure to a low level of arsenic (50ppb) during all three trimesters of fetal/neonatal development induces deficits in adult hippocampal neurogenesis in the dentate gyrus (DG), depressive-like symptoms, and alterations in gene expression in the adult mouse brain. As epigenetic processes control these outcomes, here we assess the impact of our developmental arsenic exposure (DAE) paradigm on global histone posttranslational modifications and associated chromatin-modifying proteins in the dentate gyrus and frontal cortex (FC) of adult male and female mice. DAE influenced histone 3K4 trimethylation with increased levels in the male DG and FC and decreased levels in the female DG (no change in female FC). The histone methyltransferase MLL exhibited a similar sex- and region-specific expression profile as H3K4me3 levels, while histone demethylase KDM5B expression trended in the opposite direction. DAE increased histone 3K9 acetylation levels in the male DG along with histone acetyltransferase (HAT) expression of GCN5 and decreased H3K9ac levels in the male FC along with decreased HAT expression of GCN5 and PCAF. DAE decreased expression of histone deacetylase enzymes HDAC1 and HDAC2, which were concurrent with increased H3K9ac levels but only in the female DG. Levels of H3 and H3K9me3 were not influenced by DAE in either brain region of either sex. These findings suggest that exposure to a low, environmentally relevant level of arsenic during development leads to long-lasting changes in histone methylation and acetylation in the adult brain due to aberrant expression of epigenetic machinery based on region and sex.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app