JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Starvation beneficially influences the liver physiology and nutrient metabolism in Edwardsiella tarda infected red sea bream (Pagrus major).

Dietary compromises, especially food restrictions, possess species-specific effects on the health status and infection control in several organisms, including fish. To understand the starvation-mediated physiological responses in Edwardsiella tarda infected red sea bream, especially in the liver, we performed a 20-day starvation experiment using 4 treatment (2 fed and 2 starved) groups, namely, fed-placebo, starved-placebo, fed-infected, and starved-infected, wherein bacterial exposure was done on the 11th day. In the present study, the starved groups showed reduced hepatosomatic index and drastic depletion in glycogen storage and vacuole formation. The fed-infected fish showed significant (P<0.05) increase in catalase and superoxide dismutase activity in relation to its starved equivalent. Significant (P<0.05) alteration in glucose and energy metabolism, as evident from hexokinase and glucose-6-phosphate dehydrogenase activity, was recorded in the starved groups. Interestingly, coinciding with the liver histology, PPAR (peroxisome proliferator activated receptors) α transcription followed a time-dependent activation in starved groups while PPARγ exhibited an opposite pattern. The transcription of hepcidin 1 and transferrin, initially increased in 0dai (days after infection) starved fish but reduced significantly (P<0.05) at later stages. Two-color immunohistochemistry and subsequent cell counting showed significant increase in P63-positive cells at 0dai and 5dai but later reduced slightly at 10dai. Similar results were also obtained in the lysosomal (cathepsin D) and non-lysosomal (ubiquitin) gene transcription level. All together, our data suggest that starvation exerts multidirectional responses, which allows for better physiological adaptations during any infectious period, in red sea bream.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app