Add like
Add dislike
Add to saved papers

Screening of potential target genes for cataract by analyzing mRNA expression profile of mouse Hsf4-null lens.

BACKGROUND: Hsf4 is closely related to the development of cataract. However, the molecular mechanisms remain unknown. This study aimed to explore the molecular mechanisms that how Hsf4 mutations influence development of lens and thus lead to cataract in mouse.

METHODS: The mRNA expression profile of mouse tissue samples from Hsf4-null and wile-type lenses was downloaded from Gene Expression Omnibus database. Then the LIMMA package was used to screen differentially expressed genes (DEGs) and DAVID was applied to identify the significantly enriched Gene Ontology (GO) categories for DEGs. Furthermore, the protein-protein interaction (PPI) network of DEGs was constructed using Cytoscape and the key modules were selected from the PPI network based on the MCODE analysis.

RESULTS: A total of 216 DEGs were screened, including 51 up- and 165 down-regulated genes. Meanwhile, nine GO terms were obtained, and DEGs such as SGK1, CRY2 and REV1 were enriched in response to DNA damage stimulus. Furthermore, 89 DEGs and 99 gene pairs were mapped into the PPI network and Ubc was the hob node. Two key modules, which contained the genes (e.g. Ubc, Egr1, Ptgs2, Hmox1, Cd44, Btg2, Cyr61 and Fos) were related to response to DNA damage stimulus.

CONCLUSIONS: The deletion of Hsf4 affects the expression of many genes, such as Ubc, Ptgs2, Egr1 and Fos. These genes may be involved in the development of cataract and could be used as therapeutic targets for cataract.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app